
wilde/lowe-47194 book June 28, 2002 9:38

7
XML Linking Language

In this section we describe the XML Linking Language (XLink) [DeRose+
01b], which defines how hyperlinks can be used in an XML-based environ-
ment. In section 1.3, we described how linking is done in today’s Web. This
description is based on the assumption that resources use HTML as their
document markup language. However, increasingly XML documents will
become available on the Web. There are two possibilities regarding how
hyperlinks can be used with XML documents:

• Application-specific hyperlink definitions. It is possible to define
hyperlinks specifically for certain application areas. One example is
XHTML, where the <a> element is defined to have the same semantics
as HTML’s <A> element.1 However, this approach requires XML
processors to have built-in knowledge of these specific applications,
otherwise they will not recognize the element’s hyperlink semantics.
Consequently, this approach is not very general and reduces XML’s
usefulness as a mechanism to freely define and distribute application-
specific hypermedia document types.

• General hyperlink specification mechanism. In contrast to an
application-specific definition of hyperlinks, a general mechanism for
using hyperlinks in XML documents can be defined. This is exactly
what XLink does. XLink is an application-independent way to use
hyperlinks in XML documents, so that an XLink-aware application
will be able to recognize and correctly interpret hyperlinks in any
XML document, as long as the document uses XLink for its hyper-
links. This works regardless of the actual schema the document is
using.

Since XLink defines a general mechanism for embedding hyperlinks in
XML documents, it must define a mechanism that enables XLink-specific

1It should be noted that HTML by definition is case-insensitive, while XHTML accepts
only lowercase element and attribute names.

169

wilde/lowe-47194 book June 28, 2002 9:38

170 PART II TECHNIQUE: THE WEB’S NEW LOOK

information to be recognized in an XML document. This aspect of XLink is
described in section 7.1. XLink makes it possible to specify different types
of links using a number of different element types, described in section 7.2.
For actually embedding the hyperlink information into XML documents,
XLink uses a number of attributes to assign different hyperlink semantics
to XML elements, and these attributes are described in detail in section 7.3.
Section 7.4 contains explanations of the processing model and conformance
requirements that must be satisfied by applications claiming to implement
XLink. In section 7.5, we look at how XLinks may be utilized. Finally,
section 7.6 describes the future of XLink.

7.1 EMBEDDING LINKS INTO XML DOCUMENTS

XML, as described in section 4.1, is a language for the specification of docu-
ment types and instances (i.e., documents) of these types. As such, element
and attribute names in XML are in no way restricted (except for the syntac-
tic naming rules given by the XML specification) and can be freely chosen
by document type authors. However, when XML Namespaces (described
in section 4.2) are taken into account, the rules for XML names become a
bit more restrictive by dividing names into a namespace prefix and a local
part specific to a particular namespace. XLink takes advantage of the XML
Namespaces mechanism by defining a namespace of its own. (The official
XLink namespace URI is http://www.w3.org/1999/xlink/namespace/.)
Consequently, any applications implementing XLink must also implement
XML Namespaces.

XLink’s model of embedding links into XML documents is very simple.
XLink defines a number of attributes (described in detail in section 7.3),
and these attributes are all in the global attribute partition of the XLink
namespace (as described in section 4.2). This means that once the XLink
namespace has been declared, these attributes can be used on elements
from any namespace. The purpose of this is to provide XLink with a way
to assign hyperlink semantics to arbitrary elements. The following short
XML fragment demonstrates this method of embedding XLink into XML
documents:

<TypeA xmlns:xlink="http://www.w3.org/1999/xlink/namespace/">
....
<TypeB xlink:type="simple" xlink:href="http://transcluding.com/">
....

</TypeB>
</TypeA>

In this example, an arbitrary element (TypeB) is employed as an XLink
simple link by using two attributes from XLink’s namespace on that

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 171

element. Since, from XML’s point of view, the XLink attributes are nor-
mal attributes, they have to be declared in the document’s DTD. Conse-
quently, the DTD designer must be aware of the fact that XLink is going
to be used. However, if DTD designers want to declare elements as being
XLink hyperlinks in a more built-in fashion, they can do so by declaring the
XLink attributes in the DTD using default values, as shown in the following
example:

<!ATTLIST TypeA
xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink/namespace/"

>

<!ATTLIST TypeB
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED

>

<TypeA>
....
<TypeB xlink:href="http://transcluding.com/">
....

</TypeB>
</TypeA>

In this case, the xmlns:xlink and xlink:type attributes are declared as
having fixed values in the DTD, so the attributes do not need to be speci-
fied on the element instances. The xlink:href attribute is declared as being
mandatory and, therefore, must be specified on the element instance. The
results of this declaration are that the TypeB element type becomes a simple
XLink element type by default and that any occurrence of this element has
to specify the xlink:href attribute for designating the hyperlink’s destina-
tion (see section 7.5.1 for a more detailed discussion of this technique).

In these examples, we have used the simplest way of specifying hyper-
links with XLink. This method is very similar to HTML’s linking mech-
anisms, but it also has the same restrictions as HTML. However, XLink
supports a much more powerful linking model, which is explained in detail
in chapter 3 and reviewed in the subsequent section on XLink link types.
The basic mechanism of using XLink in the context of XML documents is
the same for the simple as well as for the more complex linking situations
in XLink.

7.2 LINK TYPES AND ELEMENT TYPES

XLink defines two different types of links, described in section 7.2.1. These
conceptual link types utilize certain XML element types (identified by

wilde/lowe-47194 book June 28, 2002 9:38

172 PART II TECHNIQUE: THE WEB’S NEW LOOK

Table 7.1 Relation Between XLink Link and Element Types

XLink Link Type Related XLink Element Type(s)

simple simple
extended extended, locator, arc, resource, title

XLink attributes) for their implementation. Specifically, the XLink ele-
ment types, described in section 7.2.2, are different from the conceptual
link types supported by XLink. (This can be confusing when starting to
learn XLink, because one link often is represented by more than one XML
element.) The method of expressing XLink information in XML (i.e., by
using XML elements that are interpreted as XLink elements because they
contain XLink-conforming attributes) makes it necessary to make some
information repeatable by defining specific element types for it. (XML at-
tributes can occur only once on an element, so repeatable information has
to be represented by child elements rather than attributes.) Table 7.1 shows
how the two concepts relate.

As can be seen, XLink extended links use a number of XLink element
types, while XLink simple links use only one. The reason for this is XLink’s
goal to make the transition from HTML’s linking style to XLink easy by
providing a mechanism (the simple links) that is very similar to HTML
links. In the following two sections, we discuss in detail the link types and
the element types.

7.2.1 XLink Link Types

XLink supports two types of links: simple and extended. While the simple
links are modeled after HTML’s linking model (making a transition from
HTML links to XLink simple links very easy), XLink’s extended links are
far more powerful and are intended to be used by applications requiring
a more elaborate linking model than HTML’s. Conceptually, simple links
can be viewed as a special case of extended links, but since they use a
different syntax, they are regarded as a different type of link. Before we
discuss XLink’s link types, we will revisit three key concepts introduced in
chapter 3.

• Number of linked resources. The number of resources included in
a link (called the participating resources) is one of the key aspects
of every link and every link model. While HTML constrains this
number to two resources (the local anchor and the remote resource),

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 173

theoretically this number can be anything between one2 (being
equivalent to an annotation of a resource) and a very large number.

• Outbound/inbound/out-of-line. Outbound and inbound links are links
in which at least one of the participating resources is part of the link
itself (as a starting resource in the case of outbound links, as an
ending resource in the case of inbound links). HTML is restricted
to outbound links, because the local anchor (which is the starting
resource of the link) is defined to be the content of the <A> element.
An out-of-line link, however, does not have any of the participating
resources as part of the link itself. Therefore, it can be moved around
much more easily and, in particular, can be used to create links
between resources for which the link creator has no write access.

• Unidirectional/multidirectional. Unidirectional links can be traversed
only in one direction. For example, HTML links point from the <A>

element’s occurrence to the remote resource. If links are out-of-line,
then they can be used from all participating resources to initiate
traversal. Every link that can be used for traversal from more than
one of its participating resources is said to be multidirectional.3 This,
however, also includes the possibility that the link itself contains
information limiting its possibilities for traversal, for example, the
specification that one participating resource of a link can never be
used as a target for traversal.

Knowing these basic properties of links, we can now take a closer look
at XLink’s link types and how they are used within XML documents.

Simple Links
XLink simple links are very similar to the links provided by HTML. Simple
links associate two resources4 with a unidirectional link, and they are always

2A link having no resources would also be a valid XLink, but it would not make any sense
(maybe only as a placeholder).

3It is important to recognize that the popular “back” button in today’s browsers does
not make HTML links multidirectional, since it is a feature of the browser (locally storing a
history of previously visited HTML pages) and not of the link itself. Obviously, one cannot
initiate traversal in the “back” direction if the current resource has not been the result of a
previous traversal (i.e., one cannot use the browser’s “back” button if the browser has only
just been started).

4Note that the XLink recommendation contains a slight contradiction. In one place it
states, “A simple link is a link that associates exactly two resources, one local and one
remote, with an arc going from the former to the latter,” and then in another place it states,
“It is not an error for a simple-type element to have no locator (href) attribute value. If a
value is not provided, the link is simply untraversable. Such a link may still be useful, for
example, to associate properties with the resource by means of XLink attributes.” In other
words, a simple link may be missing the href attribute and so have only a single participating
resource.

wilde/lowe-47194 book June 28, 2002 9:38

174 PART II TECHNIQUE: THE WEB’S NEW LOOK

inline. The model of a simple link asserts one local resource (which is part
of the link), one remote resource, and a relationship between these two
resources that makes it possible to traverse the link from the local resource
to the remote resource. Since a simple link is inline, it cannot by definition
be multidirectional because traversal can be initiated only from the local
resource.

Extended Links
XLink’s extended links are more powerful and flexible, and their functional-
ity is a superset of that of XLink’s simple links (i.e., all that can be done with
a simple link can also be done with an extended link). One generalization of
extended links is that they can associate any number of resources, as shown
in Figure 7.1. In this figure, the Xlink (represented by the oval) associates
five resources, three of which are local resources (indicated by the resource

attribute value, which will be explained in detail in section 7.3). Conse-
quently, this link is an inline link. The XML representation of this link would
include an extended type element with three resource type and two locator

type children. Since there are no explicit specifications on how the link may
be traversed, traversal is possible from and to all participating resources.

One of the advanced features of XLink is that traversal rules for the
participating resources can be specified. These rules define the direction in
which an XLink can be traversed. Figure 7.2 shows a scenario where the
extended XLink of the previous example has been more specifically defined

Resource 1
type=resource

role="A"

Resource 5
type=locator
role="C"

Resource 4
type=resource

role="A"

Resource 2
type=locator
role="B"

Resource 3
type=resource

role="A"

Figure 7.1 Inline extended link

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 175

Resource 2
type=locator
role="B"

Arc 2
from�"C"
to�"B"

Arc 1
from�"A"
to�"B"

Resource 1
type=resource

role="A"

Resource 5
type=locator
role="C"

Resource 3
type=resource

role="A"

Resource 4
type=resource

role="A"

Figure 7.2 Inline extended link with arcs

using two traversal rules.5 These rules use the role attributes of the link’s
participating resources for specifying the resources between which traversal
should be allowed. The XML representation of this link would include an
extended type element with three resource type, two locator type, and
two arc type children. The participating resources of this link are exactly
the same as the participating resources of the link in Figure 7.1, but the
additional traversal rules define different traversal semantics for this link
(for example, it is not possible to traverse this link from Resource 2 to
Resource 1 because the traversal rule Arc 1 allows traversal only in the
opposite direction).

The previous examples assumed that there are local resources. How-
ever, XLink extended links can also be used as out-of-line links, in which
case none of the participating resources reside with the link description
itself. This scenario is shown in Figure 7.3. In this case, all participating re-
sources are specified as being remote by using the locator attribute value.
The interesting observation about this link is that it can be created and
managed entirely independently from all its participating resources. The
XML representation of this link would include an extended type element
with five locator type children. As with our first example of inline links,

5In Figures 7.1 through 7.4, we have differentiated types of link information graphically.
The link itself is represented by a surrounding oval, resources are shown as octagons, and arcs
are depicted by hexagons. These entities are conceptually different, but XLink maps them
all to XML element types differentiated by special attributes (described in section 7.3).

wilde/lowe-47194 book June 28, 2002 9:38

176 PART II TECHNIQUE: THE WEB’S NEW LOOK

Resource 1
type=locator
role="A"

Resource 5
type=locator
role="C"

Resource 4
type=locator
role="A"

Resource 2
type=locator
role="B"

Resource 3
type=locator
role="A"

Figure 7.3 Out-of-line extended link

Resource 2
type=locator
role="B"

Arc 2
from�"C"
to�"B"

Arc 1
from�"A"
to�"B"

Resource 1
type=locator
role="A"

Resource 5
type=locator
role="C"

Resource 3
type=locator
role="A"

Resource 4
type=locator
role="A"

Figure 7.4 Out-of-line extended link with arcs

the first example of out-of-line links does not specify any traversal rules,
thereby implicitly allowing the traversal of the link in any direction.

The final example of an extended XLink is an out-of-line link specify-
ing traversal rules, as shown in Figure 7.4. In this example, all participating
resources are still specified as being remote; but in addition to the partic-
ipating resources, the link also specifies rules for the possible traversals.

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 177

The XML representation of this link would include an extended type ele-
ment with five locator type and two arc type children. The rules specified
for this example are the same as shown in Figure 7.2, so that these two links
are functionally equivalent. However, whereas the link shown in Figure 7.2
has three local participating resources (i.e., resources that are part of the
link itself), the link shown in Figure 7.4 does not have any local resources
and can therefore be stored and manipulated independently from any of
the resources it is linking.

However, this rather conceptual view of XLink’s extended links does not
explain how extended links are actually expressed in XML. Extended links
are described differently from simple links, which are specified using only
one XLink element type (the simple element type). Specifically, extended
links use a number of different element types. In the following section, we
take a closer look at XLink’s element types.

7.2.2 XLink Element Types

As shown in Table 7.1, XLink represents the two link types using a number
of XLink element types. Because these element types make sense only in
certain combinations, XLink also defines how XLink element types have to
be properly nested. This is shown in Table 7.2, where for each XLink element
type it is shown which element types are significant as child elements.

Most importantly, the extended element type (shown as an oval through-
out the figures in the previous section) represents an extended link but
does not directly contain (as an element) all important information. It
can therefore be regarded as a container for link information. Much of the
information for an extended link is not specified in this element type’s
attributes but rather in other elements contained in the extended link el-
ement. These elements are instances of element types described in the fol-
lowing sections.

Table 7.2 XLink Element Type Relationships

Element Type Significant Child Element Type(s) Page

simple none 173
extended locator, arc, resource, title 174
locator title 178
arc title 178
resource none 178
title none 178

wilde/lowe-47194 book June 28, 2002 9:38

178 PART II TECHNIQUE: THE WEB’S NEW LOOK

Resource
This element type is represented by an octagon in the example figures. In
Web terms, a resource is anything that can be addressed via a URI; and typ-
ically a link associates several resources. In XLink, resources can be either
local or remote. Local resources are specified using the resource element
type (while remote resources are specified using the locator element type).
An XLink extended link may contain no local resources (in which case, it is
an out-of-line link) but may contain any number of local resources, which
all must be specified as resource element children of the XLink’s extended

element.

Locators
Remote resources participating in extended links are specified using locator

elements. In our example figures, these elements are also represented by
octagons, because resource as well as locator elements are used to repre-
sents resources. A locator element carries almost the same information as a
resource element with the addition of an attribute for actually locating the
resource it represents. This is the most important difference between the
locator and the resource element types: While locator elements only rep-
resent a resource (essentially by pointing to it), a resource element actually
contains the resource.

Arcs
A link’s most important facets are its resources, but it is also important for
applications to be able to specify rules for how link traversal may be used.
This is possible using arc elements, which specify traversal rules for links. In
our figures, these traversal rules are represented by hexagons. Traversal rules
specify which resources of a link are starting resources (i.e., from which re-
sources traversal may be initiated) and which resources are ending resources
(i.e., resources that may be traversed to). Additionally, it is possible to spec-
ify how this traversal of arcs should be done (see section 7.3.4 for details)
and how these arcs should be interpreted (see section 7.3.3 for details).

Any resource may be a starting as well as an ending resource, and it is
possible to define XLink arcs using arc elements that specify a class of arcs
(for an example see Figures 7.2 and 7.4, where the Arc 1 element identifies
three starting resources and one ending resource, resulting effectively in
three arcs). If no arc is specified for an extended link, it is assumed that
traversal may go from any resource of the link to any other resource.

Titles
Titles are specified with the title element type. They can be used in differ-
ent contexts, as shown in Table 7.2. In principle, title elements can be used
in all contexts where the title attribute (as described in section 7.3.3) can

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 179

be used (see Table 7.3 for a list of elements),6 and the purpose of a title

element is to enable applications to use more complex title content (i.e.,
XML text with arbitrarily complex structures) than the simple string con-
tent possible with the title attribute. Whether titles are specified using
attributes or elements is entirely up to the link author. The following list
shows which XLink element types a title element may be a child of:

• Child of an extended element. In this case, the title element contains
the title of the extended link (as discussed in the “Extended Links”
section earlier in this chapter). This title does not describe
any individual property of the link, but the link as a whole.

• Child of a locator element. It is possible to describe the title of
remote resources (discussed earlier in the “Locators” section) using
a title element as a child of the locator element representing the
remote resource.7

• Child of an arc element. Arcs between a link’s resources (discussed
earlier in the “Arcs” section) can also be described with title ele-
ments containing the arcs’ titles. As is the case with all occurrences of
title elements, it is up to the link creator to decide whether title

attributes or title elements should be used.

Table 7.3 Attribute Use Patterns for XLink Element Types

Attribute
Name simple extended locator arc resource title Page

arcrole ◦ ◦ 183
actuate ◦ ◦ 184
from ◦ 188
href ◦ • 182
label ◦ ◦ 188
role ◦ ◦ ◦ ◦ 182
show ◦ ◦ 185
title ◦ ◦ ◦ ◦ 183
to ◦ 188
type • • • • • • 180

6The only exception to this is the simple element type, which may have a title attribute,
but not a title element type child.

7It is not possible to use title element type children for the resource element (see the
“Resource” section on the preceding page). The reason for this asymmetry between remote
and local resources is not clear from the XLink specification.

wilde/lowe-47194 book June 28, 2002 9:38

180 PART II TECHNIQUE: THE WEB’S NEW LOOK

It is important to note that in all cases it is perfectly legal for multiple
title elements to appear as children of the same parent XLink element,
which may be very useful for internationalization and localization purposes.
How an XLink application chooses which title element to display is outside
the scope of the XLink specification, but one obvious approach would be
to use XML’s xml:lang attribute, which identifies languages of element
attributes and content by using language tags as defined by Internet RFC
3066 [Alvestrand 01] (see section 7.5.1 for an example).

7.3 ATTRIBUTES

In the previous section, we presented the XLink link types (conceptually, as
well as their mapping onto element types); while in section 7.1, we described
the basic mechanism of embedding XLinks into XML documents. Now we
discuss how to combine these two issues, describing how different aspects of
various types of XLinks can be specified in XML documents using particular
attributes of the XLink element types.

XLink uses attributes for embedding the link formation in XML docu-
ments. XLink defines ten attributes, grouped into five different categories:
element type attribute (type), locator attribute (href), semantic attributes
(role, arcrole, title), behavior attributes (actuate, show), and traversal
attributes (label, from, to). These attributes are shown in Table 7.3. In
this table, a “•” sign indicates a mandatory attribute,8 while a “◦” sign
indicates attributes that are optional. If an attribute occurs on an element
but is neither mandatory nor optional for this element type, then it does
not convey any XLink semantics.

7.3.1 Element Type Attribute

XLink uses attributes to embed links into XML documents, and one of
these, the type attribute, assigns XLink semantics to the element on which
it appears. It is a very important attribute because it defines which other
XLink attributes can be used on a particular element (according to the
rules summarized in Table 7.3).

type
The type attribute determines the XML Linking Language element type of
the element that it appears on. Because of the fact that there is a predefined

8It is easy to understand why the type attribute is mandatory for all XLink element
types—because it has to be present to specify the element’s type. Without the type attribute,
it wouldn’t be possible to specify an element as being of a certain XLink element type.

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 181

set of XLink element types, the type attribute may have only the following
values:

• simple – This value defines an element as being an XLink simple link.
Simple links provide the easiest way to use XLink and are very similar
in nature to the links provided by HTML. Simple links are described
in detail in the “Simple Links” section earlier in this chapter. One
important aspect of simple links is that all information relevant for
the link is specified in attributes of the simple link element.

• extended – XLink extended links are more complex to use than simple
links, but are also more powerful. The “Extended Links” section
describes their possible uses. It is important to note that most of
the information necessary for an extended link is not specified in
attributes of the extended link’s element but in attributes of other
child XLink elements contained in the extended link element.

• locator, arc, resource, title – These values are used to assign
XLink semantics to elements according to the element types described
earlier in the “XLink Element Types” section. These element types
may appear only as direct or indirect children of extended type
elements (according to the relationship shown in Table 7.2).

• none – This value can be used to declare explicitly that an element
does not have any XLink-specific semantics, so that any attributes
appearing on the element or any XLink elements appearing within
the element do not have any XLink semantics.

Obviously, the type attribute has to be mandatory for all XLink ele-
ment types because it is the only way an XLink application can identify
XLink element types in an XML document.

7.3.2 Locator Attribute

Links connect resources, and therefore one of the most important aspects of
a link is the actual identification of these resources. In XLink, resources can
be either local (implicitly for simple links, or explicitly by using resource

type elements as described in the “Resource” section earlier in this chapter)
or remote. Remote resources may occur in simple as well as in extended
links; and in both cases the same attribute is used, the href attribute. In
the case of simple links, it is used directly on the simple type element (it
is optional on simple type elements because they may be links with only
the local resource); and in the case of extended links, it is used on locator

type elements (it is mandatory on locator type elements because their only
purpose is to locate remote resources by reference).

wilde/lowe-47194 book June 28, 2002 9:38

182 PART II TECHNIQUE: THE WEB’S NEW LOOK

href
This attribute has the same name as the corresponding attribute in HTML’s
link element, and it serves the same purpose. It is a reference identifying
a remote resource; and because XLink is part of the Web architecture,
resources must always be identified using a URI reference as described in
section 3.2. If the URI points into a resource (i.e., contains a fragment iden-
tifier) and this resource is an XML document, then the fragment identifier
must be an XPointer.

The href attribute is the only way to locate remote resources in XLink,
and there is no mechanism for making additional assertions about these
resources. If applications are interested in additional functionality—for
example, for ensuring link integrity, such as with checksums, cache identi-
fiers, or anything else—it is possible to specify this information in additional
attributes specific to the application and not in XLink’s namespace.

7.3.3 Semantic Attributes

Not only do links associate resources, but this association also has some
meaning. This meaning is, however, application-specific—in other words,
there is no predefined set of “link meanings” in XLink. For example, a link
for the book you are currently reading may associate resources such as the
authors’ personal Web pages, the publisher’s Web site, a number of online
stores selling the book, several Web pages with reviews of the book, and, of
course, the book’s own Web site. While XLink makes it possible to create
such a link, there is no standardized way to describe the actual semantics
of the linked resources. XLink follows the path of many Web technologies
and defines a way in which semantic information may be specified but does
not define a given set of semantics.

Semantics are specified using URI references. Both attributes (role
and arcrole), which carry semantic information that can be interpreted by
applications, must be URI references. This reference identifies a resource
that describes the intended semantics, but XLink makes no assumption
about the actual resource format. In addition to the two machine-readable
semantic attributes, there is one that is intended to present semantics in a
human-readable way (title). The following XLink attributes can be used
to specify semantic information:

role
This attribute describes the role that an item plays. It may be used to
describe the role of a link (appearing on a simple or extended element) or
the role of a resource (appearing on a locator or resource element). Even
though the role attribute has the same name for link (simple/extended)
and resource (locator/resource) elements, notice that it serves different

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 183

purposes. In the first case, it describes the role of the complete link (e.g.,
that a particular link is describing a book); while in the latter case, it
specifies the role of a particular resource within the link (i.e., the “book”
link may associate resources describing people, publishers, magazines, and
the book itself).

arcrole
While the role attribute describes the roles of a link and a resource within
a link, the arcrole attribute describes the role of an arc. In XLink, arcs are
represented either by arc elements or, implicitly, by a simple element; and
consequently these are the two element types that may carry an arcrole

attribute.
In our previous example of the link describing this book, the arcs con-

necting the various resources of the link may carry arcrole attributes that
define a “person” resource as being the author of a “book” resource. One
resource—for example, a publisher—may have different arcs with different
roles attached. For example, the book’s publisher may have two arcs going
from the “book” resource to the “publisher” resource—one with an arcrole

attribute for the book’s publication; the other with an arcrole attribute
indicating that the publisher is also running an online store selling the book.

There is one special case of an arcrole attribute defined in the XLink
specification. This is the special case of a linkbase, where the arc identi-
fies a linkbase for a particular resource. This case is discussed in detail in
section 7.5.3.

title
While the role and the arcrole attributes are meant to carry machine-
readable role descriptions, the title attribute is intended to contain human-
readable information about the element on which it appears. It is allowed
for all elements that identify links and/or resources (i.e., simple, extended,
locator, and resource elements).

In XML, attributes can carry only character data—in other words, it is
not possible to use structured XML information as an attribute value. If link
authors want to create titles that are more than simple character strings
(e.g., structured titles or titles in different languages for internationalization
purposes), they can instead use the title element type (or even use both a
title attribute and a title element), as described in the “Titles” section
earlier in this chapter.

XLink’s semantic attributes provide a mechanism for link authors to
associate semantic information with links or, more specifically, with a link
as a whole, its resources, or its arcs. The semantics are entirely application-
dependent. XLink’s only requires them to be expressed as URI references.

wilde/lowe-47194 book June 28, 2002 9:38

184 PART II TECHNIQUE: THE WEB’S NEW LOOK

The actual resources behind these references are in no way prescribed or
restricted by XLink. Furthermore, if link authors feel that XLink’s role and
arcrole attributes are not sufficient for a particular application, they are
free to supplement links with their own, non-XLink, semantic information.

7.3.4 Behavior Attributes

A link describes an association between several resources. Generally, ap-
plications are expected to do something with links, and as described in
section 1.3.2, even today’s restricted linking technologies result in varying
behaviors, depending on what kind of link is encountered when display-
ing a Web page (for example, <A> links are visually formatted and users
may traverse them by clicking on them, while links are automati-
cally traversed by the browser to embed the image into the formatted Web
page). It is not possible to describe all possible behaviors of applications
in advance (for example, style sheet processing also uses links, but the ac-
tual process of applying a style sheet is much too complex to be described
in a generic way), but XLink defines a restricted two-dimensional vocab-
ulary of how applications should behave when traversing a link. Because
traversal always implies an arc (links may be traversed only in the ways
prescribed by the link’s arcs), both attributes may be used only on arc

or simple elements (the latter implicitly defining an arc between the local
and the remote resource). The two attributes are described in the following
sections.

actuate
If an application encounters a link with arcs leading from a starting re-
source currently being presented to ending resources located elsewhere (for
example, a different XML document), it is important to determine the ap-
plication’s behavior. The actuate attribute describes the desired timing of
link traversal and can have the following values:

• onLoad – This value instructs the application to traverse to the ending
resource immediately on loading the starting resource (i.e., to perform
automatic initial processing). This effect is well-known from HTML’s
mechanism for using images, as follows:

In this example, the browser traverses the link when formatting the
HTML page. Even if the HTML page contains more than one

element, the browser loads all images, because HTML defines this

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 185

behavior as being the default for images. (It can be turned off in most
browsers by disabling the automatic image loading.)

• onRequest – In many cases, links are not to be followed automatically,
but are traversed on request, for example, by user interactions. In
case of requested traversal, the application must make sure that a
starting resource (i.e., anchor) can be identified (in most browsers,
this is achieved by different formatting, for example, underlining
and/or color) and that the user can trigger traversal through some
kind of interface (in most browsers, a simple mouse click initiates link
traversal). HTML’s links are a good example for this behavior, as
follows:

...

A link like this will display the <A> element’s content, formatted in
a way that identifies it as a link, and if the user points and clicks on it
with the pointer, the browser will traverse the link—in other words,
load the target document.

• other – The two predefined values for the actuate attribute probably
cover many application areas, but it is possible that some applications
may want to specify alternative (or additional) semantics. XLink
therefore supports an other value for the actuate attribute, which
instructs the XLink processor to look for application-specific markup
further describing the expected behavior for link traversal.

• none – If a link author explicitly wants to specify no specific actuation
semantics for the traversal to the ending resource, this can be done
using the none value, which also implies that there is no markup that
is application-specific from which any behavior could be determined.

show
The show attribute describes how the result of the link traversal should be
presented. The values supported by XLink are as follows:

• new – This value indicates that the resource resulting from the traver-
sal should be presented in a new presentation context, for example,
a new window. The most popular example for this behavior can be
easily expressed in HTML:

...

A browser traversing this link will open a new window with the target
page in it, while the page containing the link will still be visible in its
original window.

wilde/lowe-47194 book June 28, 2002 9:38

186 PART II TECHNIQUE: THE WEB’S NEW LOOK

• replace – In this case, the presentation context containing the start-
ing resource (i.e., the resource from which traversal was initiated)
should be replaced by the ending resource. This is the default
behavior of HTML links as shown in the following example:

...

A second, more explicitly coded variant is as shown:

...

Clicking on a link like this will instruct the browser to load the
target page into the same window as the link, effectively replacing
the resource containing the link with the new resource.9

Consequently, a traversal based on actuate="onLoad" and
show="replace" attributes will have an effect similar to automatic
forwarding to the presentation context of the ending resource.
However, if there is more than one starting resource specifying this
behavior, the application behavior is unconstrained by the XLink
specification.

• embed – In this case, the application is instructed to embed the ending
resource into the presentation context of the starting resource, with
the exact behavior of embedding being application-dependent. HTML
also has an example for this case:

The browser typically embeds the referenced image into the
formatted document (unless image loading is turned off in the
browser). XLink’s embed value implies that the starting resource is
replaced by the ending resource.10 In almost all cases, this is different
from the replace value, which replaces the entire presentation
context containing the starting resource.11

The embed value combined with an actuate="onLoad" attribute
can be used to implement transclusion. XLink does not define how
an application should display embedded content, but a reasonable

9It is important to note that in this case not only is the starting resource of the link
replaced (this would be only the <A> element’s content) but also the complete presentation
context of this resource (i.e., the whole Web page).

10Because the element is always empty, it is not important or is it even apparent
that the starting resource (i.e., the element’s empty content) is replaced by the ending
resource.

11Consequently, if the starting resource is the whole document, then replace and embed

will have the same effect.

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 187

implementation should identify the embedded content as coming from
another resource and should also provide a way for the user to view
the embedded content in its original context.

• other – Embedding and replacing in many cases may be sufficient
to describe the behavior of links that are used only for creating
interlinked presentations. However, links may also imply some kind
of processing or other behavior, such as that resulting from HTML’s
style sheet mechanism:

<LINK REL="stylesheet" TYPE="text/css" HREF="general.css">

In this case, the browser should not traverse the link to somehow
display the ending resource of the link, but instead should retrieve the
ending resource (the CSS style sheet) and use it to style the starting
resource. This kind of behavior is highly application-specific, and
XLink therefore supports an other value for the show attribute, which
instructs the XLink processor to look for markup that is application-
specific further describing the expected behavior on link traversal.

• none – If a link author explicitly wants to associate no specific
behavior with the traversal to the ending resource, this can be
done using the none value, which also implies that there is no
application-specific markup from which any behavior can be
determined.

If the starting and/or the ending resource of a link traversal con-
sists of multiple non-contiguous locations, then application behavior is un-
constrained. However, application designers either should make sure that
resources are always contiguous, or should specify what they expect appli-
cations to do in case of non-contiguous locations.

Even though it is fairly simple to explain XLink’s behavior attributes
using analogies to HTML, the issues get much more complicated when
thinking of more complex presentation models such as XML documents
formatted by XSL style sheets. In this case, it is easily possible for one con-
tiguous starting resource in the underlying XML document to appear sev-
eral times in the formatted result (for example, a heading appearing in the
table of contents as well as the content itself),12 and a reasonable application
behavior in cases such as this is hard to define. The W3C has noticed
this problem and is currently working on a presentation model for XLink
[Walsh 01], which we discuss in section 8.1.1.

12Note that this case is different from non-contiguous resources, which are explicitly ex-
cluded from the show attribute’s behavior in the XLink specification.

wilde/lowe-47194 book June 28, 2002 9:38

188 PART II TECHNIQUE: THE WEB’S NEW LOOK

7.3.5 Traversal Attributes

XLink’s traversal attributes are used to make the actual connection be-
tween a link’s arcs (represented by arc elements) and a link’s resources
(represented by locator and/or resource elements). The mechanism for
this is very easy to understand—resources can be labeled with names, and
arcs use these names. XLink supports the following attributes:

label

This attribute can be used to label resources and may therefore appear on
locator and/or resource elements. Its value must be a valid namespace-
compliant XML name. It is not required to be unique within a link (i.e.,
there can be several resources within one link having the same label).

from

The from attribute may appear on an arc element and specifies the name
of the starting resource. There must be at least one resource having a label
with that name.

to

Complementary to the from attribute, the to attribute also appears on
arc elements and specifies the name of the ending resource. There must
be at least one resource having a label with that name.

XLink’s concept of arcs is described in the “Arcs” section earlier in
this chapter. The most important aspect to keep in mind is that one arc

element can define more than one arc, which is the case if the from and/or
to attribute specify labels that appear on more than one of the link’s
resources.

7.4 INTERPRETATION OF XLINKS

XLink is a specification that defines a generic way for expressing link in-
formation in XML. As such, it is built on top of XML and associated stan-
dards, which need to be observed by any application processing XLinks.
The next section summarizes the processing requirements that must be met
when working with XLink. Furthermore, XLink defines conformance crite-
ria that go beyond the requirements of the underlying XML standards, and
section 7.4.2 describes these conformance requirements.

7.4.1 Processing

XLink is built on top of the Extensible Markup Language, and consequently,
XML and some of its important companion standards are essential for

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 189

correctly processing XLinks. In particular, the following standards must
be observed:

• XML [Bray+ 00] (see section 4.1) – XML is the foundation of XLink,
which specifies information in terms of XML elements and attributes.
Consequently, XML defines how elements and attributes are used
syntactically within an XML document.

• XML Namespaces [Bray+ 99] (see section 4.2) – XLink directly uses
XML Namespaces by defining a namespace of its own and expressing
all information as attributes within this namespace. For applications
to be able to correctly and unambiguously identify XLink information
within an XML document, the XML document not only has to be
well formed but also has to be compliant with the XML Namespace
specification.

• XML Base [Marsh 01] (see section 4.3) – Given that XLink is used
for linking between resources, it obviously has a strong reliance on
references to resources, and these references may be absolute or
relative. In the case of relative references, they must be interpreted
according to the rules defined by XML Base, which makes it neces-
sary for XLink applications to implement XML Base.

• URI [Berners-Lee+ 98; Hinden+ 99] (see section 3.2) – References
to resources are always given as URI references, and any application
interpreting these references must do so according to the relevant
specifications. This does not mean that an XLink application will
always be able to retrieve all referenced resources (for example, if a
URI reference specifies a scheme not supported by the processing
application, then this resource cannot be retrieved), but at least it
must be able to correctly process and interpret these references.

Even though XLink specifies all attributes in XML syntax, the standard
explicitly states that it is not necessary for XLink applications to work only
with XML syntax. If XLink applications instead are set up to work with
XML’s data model (the XML Infoset [Cowan & Tobin 01], as described
in section 4.5), they are allowed to do so. Consequently, it is possible to
implement XLink applications that operate on XML Infoset information
items and thus never generate or use XML syntax. In this case, XLink’s
XML syntax would serve only as an exchange syntax and export format
to other XLink applications, while internally XLink would be used as a
data model.

7.4.2 Conformance

The processing requirements described in the previous section make sure
that XLink applications always work with XML syntax and that certain

wilde/lowe-47194 book June 28, 2002 9:38

190 PART II TECHNIQUE: THE WEB’S NEW LOOK

rules, such as how to interpret relative URI references, are followed. How-
ever, XLink also defines constraints not covered by the standards listed
in the previous section. These constraints must also be followed by XLink
applications. XLink describes conformance on a per-element basis, stating
that an XML element conforms to XLink if the following are true:

1. It has a type attribute from the XLink namespace whose value is one
of simple, extended, locator, arc, resource, title, or none.

2. It adheres to the conformance constraints imposed by the chosen
XLink element type, as shown in Tables 7.2 and 7.3. While XLink
defines that extraneous (i.e., neither mandatory nor optional) ele-
ments or attributes are simply ignored (i.e., they do not carry any
XLink semantics), it is an error if mandatory elements or attributes
are not present.

Applications conform to XLink if they process XML documents or XML
Infosets containing conforming XLink elements and observe all rules defined
by XLink, for example, the requirement that from and to attributes of the
arc elements must use names that appear on at least one of the link’s
resources.

7.5 USAGE

So far, we have described how XLink can be used to define linking informa-
tion for XML environments. However, even though this is the foundation
on which future XML linking applications will be built, it is also important
to have some guidelines for using XLink in an effective way. In this section,
we cover some topics that are not essential for XLink from a standards
point of view, but that can be very helpful for applying XLink in real-world
scenarios.

In particular, in section 7.5.1 we discuss techniques for declaring XLink
elements and attributes in schema definitions. Because XLink may be ex-
tended for special scenarios where its features are not sufficient, in sec-
tion 7.5.2 we describe how extensions of XLink can be implemented in
schema definitions. Finally, in section 7.5.3 we describe how XLink can be
used as the foundation for linkbases and how future applications may use
XLink as an export format for huge collections of link information.

7.5.1 XLink Element and Attribute Declaration

XLink defines a number of attributes for embedding link information into
XML documents, but it does not make any assumptions about the schema
being used for the documents containing XLinks. It is perfectly legal for

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 191

XML documents containing XLink information to have no schema at all,
in which case they would be well-formed documents (as opposed to valid
documents). However, in many cases it is advisable to define schemas when
working with XLink, because validating a document may be a useful step
in detecting errors as early as possible.

Because XLink makes no assumptions about schemas, it is the author’s
choice alone as to which schema language to use. The two most popular
candidates are DTDs, as defined in the XML specification itself, and XML
Schema [Biron & Malhotra 01; Thompson+ 01]. Although we limit our
discussion to DTDs (for the sake of brevity), the same principles that we
describe for defining DTDs for XLink content also apply to XML Schema
(and to any other schema language for XML).

As we have discussed, XLink information is carried only by attributes,
even though the type attribute also introduces a way to assign XLink se-
mantics to elements. Most applications will probably combine their own
data model (which will be entirely application-specific) with XLink’s data
model to make their data model XLink-enabled. The advantage of this
approach is to be able to use existing software for creating, modifying,
managing, and presenting XLinks within XML documents. In most cases,
application designers will probably want to assign XLink semantics to some
of their elements, thus making them links in the XLink sense. This can eas-
ily be achieved by defining #FIXED attributes for the elements that should
have XLink semantics. Consider the following:

<!ELEMENT simple ANY >
<!ATTLIST simple
xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:arcrole CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:show (new

| replace
| embed
| other
| none) #IMPLIED

xlink:actuate (onLoad
| onRequest
| other
| none) #IMPLIED >

In this example, the simple element type has fixed attributes that de-
clare the namespace13 and the element’s XLink element type (in this case,

13If the element is always used in the same document type, then the namespace could
simply be declared once on the document element.

wilde/lowe-47194 book June 28, 2002 9:38

192 PART II TECHNIQUE: THE WEB’S NEW LOOK

it is declared to be a simple link). The other attributes declared for the
simple element type represent the relevant XLink attributes, as shown in
Table 7.3. It should be noted that for some attributes (title, show, and
actuate), the allowed values can be specified in the DTD; while for other
attributes (href, role, and arcrole), the DTD declaration is too permissive,
so that further constraints at the application level are necessary to make
sure that the element not only is valid XML but also conforms to XLink.14

This is a general pattern, showing that some of XLink’s constraints can be
reflected in a schema while others have to be checked on the application
level (i.e., by the application processing the XLinks).

Similar DTD declarations can be made for extended links and the
XLink element types associated with them. The XLink specification con-
tains an example of such a declaration.

Two things, which are described next, should always be kept in mind
when creating schema definitions for XLink elements and attributes:

1. No schema language today is sufficiently powerful to formally
declare all conformance constraints defined by XLink. Different
schema languages have different levels of support (for example, URIs
have to be declared as simple CDATA in DTDs, while XML Schema
supports the anyURI datatype), though some level of checking on the
application level will always be necessary. There are two things to
consider:

• Use a schema language that is as powerful as possible, so that as
much checking as possible can be done on the schema level.

• Use a validation tool that includes XLink support. We currently
do not know any XML parser that also validates XLink (or any
XLink parser that can be easily put on top of an XML parser);
but with the increased support for XLink, software like this will
certainly appear.

Note the following for DTDs as well as for XML Schema: Defining
things in a declarative way is always better than writing code, so care
should be taken to avoid as much as possible checking that needs to
be coded within applications.

2. Even though XLink defines conformance constraints that ensure links
can always be interpreted in a meaningful way, applications may

14In this case, XML Schema would provide an easy way to already declare the attributes
with the appropriate syntactic constraints by using the anyURI datatype. Consequently, when
XML Schema instead of DTDs is used, applications can rely on stronger validation and thus
can be kept smaller and less complex.

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 193

choose to be more restrictive and define more constraints. The
following are examples:

• For internationalization purposes, applications may choose to
generally disallow title attributes and instead require as
many title elements to be present as there are languages
to be supported. This requirement could be implemented
in a number of different ways, including the following:

<!ELEMENT locator (title-en, title-de, title*) >
<!ELEMENT title-en ANY >
<!ATTLIST title-en
xml:lang CDATA #FIXED "en"
xlink:type (title) #FIXED "title" >

<!ELEMENT title-de ANY >
<!ATTLIST title-de
xml:lang CDATA #FIXED "de"
xlink:type (title) #FIXED "title" >

<!ELEMENT title ANY >
<!ATTLIST title
xml:lang CDATA #REQUIRED
xlink:type (title) #FIXED "title" >

In this example, titles for locators would always have to be
present in English and German and would be optional in
other languages.

• Applications may restrict local resources to certain types
of information and may provide elements to make sure that
the local resources always have the expected form, as
follows:

<!ELEMENT book (title, subtitle, isbn?) >
<!ATTLIST book
xlink:type (resource) #FIXED "resource" >
xlink:role CDATA #FIXED "http://roles.org/book"
xlink:title CDATA #REQUIRED
xlink:label NMTOKEN #REQUIRED >

In this example, the type as well as the role of the element is
fixed, which makes every book element an element that is an
XLink resource and that plays the role described by the URI
reference supplied as the role attribute value. The children of
the book element contain information further describing the
book.

This general technique of constraining the XLink application’s linking
declarations (by designing the schema to specifically use particular
attribute values) can make XLink application development much

wilde/lowe-47194 book June 28, 2002 9:38

194 PART II TECHNIQUE: THE WEB’S NEW LOOK

easier. In particular, the more limitations declaratively specified in
the schema, the less work has to be done in the application.

This discussion of what to keep in mind when declaring XLink docu-
ment types concludes our examination of how to define and use elements
and attributes for XLink applications. We have limited our discussion to
DTDs, but the general principles are applicable to other schema languages
as well. A W3C note [Maler+ 00] is available that specifically discusses how
to use XLink in existing document types, but it is limited to XML Schema.

7.5.2 Extending XLink

XLink defines a format for representing links in XML, but it is not the only
possible way to define links, and it does not define all possible aspects of
link information. For example, an application might want not only to create
links to remote resources but also to store these resources in a cache, so that
the cached copy is still available if the remote resource itself is unavailable.
There are many problems to be solved if caching is to be implemented, and
the approach we take here certainly is too simple to be used in practice. It
is merely intended to illustrate the issue of how to extend XLink.

A cached resource could be treated as a separate resource and asso-
ciated with the original resource via a link using a special arcrole value
indicating that one end of the arc is any resource, while the other end is the
cached copy. However, from a modeling point of view, this might be overly
cumbersome and create too many links. Also, since a cached copy always is
associated with a resource, it could be argued that the caching information
should be made part of the remote resource’s locator, as follows:

<!ELEMENT locator (title*) >
<!ATTLIST locator

xlink:type (locator) #FIXED "locator"
xlink:href CDATA #REQUIRED
xlink:role CDATA #IMPLIED
xlink:title CDATA #IMPLIED
xlink:label NMTOKEN #REQUIRED
cache-id NMTOKEN #REQUIRED
cache-timestamp NMTOKEN #REQUIRED >

In this case, the locator element’s declaration is extended by two at-
tributes (which are not from the XLink namespace) describing the caching
information for the resource represented by the locator. A locator element
like this could be interpreted by the application implementing the caching
strategy, which could access the cached copy. However, it could also be used

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 195

by any other XLink application, which would ignore the caching information
(because the attributes are not from the XLink namespace), but could pro-
vide normal access to the remote resource.

This example demonstrates how we can add additional information to
suit applications’ needs that go beyond XLink’s capabilities but that may
still benefit from the linking foundations laid by XLink. Another typical
example would be to extend the locator element with checksum informa-
tion so that applications could easily check whether the remote resource
had been changed since the checksum was generated. Again, applications
supporting the checksum information would benefit from the possibility of
detecting changes in remote resources; while basic XLink applications, al-
though failing to notice whether the resource had been changed, could still
use the locators.

7.5.3 Using XLink for Linkbases

One of XLink’s most interesting features is its ability to create out-of-line
links—links that have only remote resources. A collection of out-of-line links
is called a linkbase, and XLink provides one mechanism for representing
this. Linkbases are not a concept introduced by XLink; and even though
every linkbase will include XLink concepts, it is not necessarily limited
to them. Consequently, linkbases can be built on top of XLink’s model
but can also extend XLink where appropriate to make them more useful
(such as including cache information or checksums, as discussed before in
section 7.5.2).

As described in section 7.3.3, the arcrole attribute contains seman-
tic information (in the form of an URI reference) about the arc between
two resources. XLink defines one special value for this attribute15 (http:
//www.w3.org/1999/xlink/properties/linkbase), which indicates that
the ending resource is a linkbase for the starting resource. Applications
processing this kind of arc are expected to retrieve the linkbase (an XML
document containing a collection of XLinks) and extract all links from it
that are relevant to the starting resource.

The linkbase as a collection of links is an interesting concept that has
been widely studied. Linkbases can be used to change the perspective on
content and link handling [Wilde & Lowe 00]. In Figure 7.5 we show how
information providers can use the concept of linkbases (shown at the storage

15This is the only predefined value for semantic attributes in the XLink specification, and
the resource behind that URI demonstrates that the specification of semantics often is given
only in prose and not in some machine-readable format.

wilde/lowe-47194 book June 28, 2002 9:38

196 PART II TECHNIQUE: THE WEB’S NEW LOOK

Conversion

Presentation

StorageGeneration

Content

Links

Information
Provider’s
Database

XML and
XLink
Filter

HTML
Filter

Information
Provider’s

Web Server

Publishing
Tools

WWW

Author

HTML
Document

HTML
Browser

XLinks

XML
Document

XML and
XLink

Browser

Figure 7.5 XLink and linkbases

level) to create a web of information resources that can be dynamically
assembled for presentation. This web is assembled in four stages:

• Generation. Authoring tools normally are very content-centric—
in other words, they concentrate on the task of creating content.
However, when creating content (such as writing articles), authors
usually use other interlinked resources (such as Web pages), and
authoring tools could be specifically designed to support authors
in capturing these interrelationships in the form of links.

• Storage. Authoring tools that support capturing link information
would require that we not only store the content generated by
authors but also store the linking information. On a conceptual
level, it is not important exactly how content and links are being
stored—whether they use XML-based formats, databases, or other
means of storage. The important issue is that we store links sep-
arately from content while also ensuring that the content model
and the link data model are integrated.

• Conversion. While the content is stored in a database or a content
management system, the links are kept in a separate linkbase. When
we make this information available (in Figure 7.5 this is through a
Web server, though many other possibilities also exist), it is necessary
to convert the information to a form that can be utilized by appro-
priate presentation tools.

• Presentation. Presentation can be based on very different technol-
ogies; but since our focus is highly interlinked information, we
assume the use of various Web-based technologies, such as HTML or
XML/XLink. The conversion step can be used to adapt

wilde/lowe-47194 book June 28, 2002 9:38

Chapter 7 XML Linking Language 197

the information to any form necessary, probably using some
transformation process such as XSLT.

Even though XLink can be used directly at the presentation level (as-
suming the browser is XLink-compliant), this is not necessarily required.
For example, XLink may simply be used as an exchange format for linking
information. Prior to presentation, the XLinks are converted to some form
of presentation linking (such as the links in HTML). It would make sense
to align the system’s internal link data model with XLink if it is foresee-
able that XLink will be a popular export format, but that would not be
necessary.

Further refining the concept of content management and linkbases, it
becomes apparent that where we have a large volume of link information,
not only do we need to have an effective form of storage (i.e., a linkbase), but
we also need appropriate metadata that describes the links. This is where
topic maps [ISO 00; Pepper & Moore 01] come into play. Topic maps are
a form of semantic net, and they make it possible not only to express se-
mantic information about resources (such as that one resource describes
a particular person and another describes a particular city) but also to
associate these information items (for example, this particular person has
been born in this particular city). This makes it possible to organize the
link information much better than by simply collecting links because more
semantic information can be captured.

A simple example can be visited at http://wildesweb.com/glossary/,
which is a glossary of Web-related terms. The glossary itself is stored as one
XML document with a data model similar to topic maps. Starting from this
XML document, an XSLT style sheet is applied to generate a set of highly
interlinked HTML pages and also a printable version, which is available as
a PDF document.16 Even though this is a small example, it shows the basic
steps illustrated in Figure 7.5. At the time of writing, no XML/XLink pre-
sentation is available because no browser fully supports these formats, but
it would be very easy to extend the conversion process with another XSLT
style sheet generating XML/XLink from the original XML document. This
glossary example also demonstrates that link information can become very
important and that services may exist in the future that offer only linkbase
access but no content of their own.

One problem currently unsolved in the linkbase scenario is the ac-
cess to linkbases. Technically, an XLink processor is required to retrieve
the complete linkbase and then use only the links relevant to the resource

16The printable version is generated by transforming the XML document into LATEX(also
using an XSLT style sheet) and then producing a PDF document by using the pdflatex

program.

wilde/lowe-47194 book June 28, 2002 9:38

198 PART II TECHNIQUE: THE WEB’S NEW LOOK

currently being processed. This obviously is not a reasonable strategy for
large linkbases (primarily due to performance considerations), so it is nec-
essary to have a protocol that enables XLink processors to query a linkbase
for certain links (e.g., to request all links in which a certain Web page partic-
ipates as a starting resource). However, this problem is currently unsolved.
We hope that in the future standards will emerge that specify how to query
XLink linkbases.

7.6 THE FUTURE OF XLINK

XLink is a very new standard, and software products supporting it are only
just starting to appear (see section 8.2 for some examples). However, com-
pared to its companion standard, XPointer, XLink is generally accepted;
and we hope that future versions of popular software (such as Web browsers)
will offer full XLink support. However, even though XLink and XPointer
technically are independent, they complement each other; and we hope that
the disruptions in XPointer’s development will not also stop XLink’s suc-
cess. This remains to be seen; but regardless of their support in popular
software, the lessons learned from XPointer and XLink can already be used
to implement much better content management systems than are available
today.

One political question about XLink’s success is also very interesting:
Since XLink’s new features (in particular, transclusion and out-of-line links)
somehow blur the line between different resources, people and companies
may have problems with some of XLink’s applications and copyright issues.
Even HTML with its limited linking abilities has caused a large number of
lawsuits against “illegal links” (“deep linking” is one such example, “fram-
ing” is another), and XLink opens new doors in this direction, making
copyright infringements more likely than today. How companies (and, in
particular, software producers) deal with that problem will be one of the
main factors governing the fate of XLink.

7.7 CONCLUSIONS

XLink is the language for embedding link information in XML documents.
XLink generalizes and extends HTML’s linking model and enables users to
create complex links. This chapter describes XLink in detail and builds on
the foundations laid in chapter 3. XLink will provide the structural fabric of
the XML-enabled Web, and the goal of this chapter is to familiarize readers
with all the advanced concepts supported by XLink, such as multi-ended
links, third-party links, and linkbases.

