15. Patterns

The ‘pattern’ facet requires more explanation than the brief description given in Section 14.6 provides. This XML feature is based on the regular expression capa​bilities of the Perl programming language. It is therefore very powerful, but this strength comes at the cost of some complexity.

15.1 Introduction

Although the XML Schema language has a large number of built-in data types that can be used, restricted, and extended, some requirements demand much finer con​trol over the exact structure of a value. For example, a simple code might need to consist of three lowercase letters:

	<Code>abc</Code>
	<!-- OK -->

	<Code>ABC</Code>
	<!-- ERROR -->

	<Code>abcd</Code>
	<!-- ERROR -->

Similarly, when an element or attribute contains an ISBN (International Standard Book Number), it should be possible to apply constraints that reflect the nature of ISBN codes. All ISBN codes are composed of three identifiers (location, pub​lisher, and book) and a check digit, separated by hyphens (or spaces). Valid values would include ‘0-201-41999-8’ and ‘963-9131-21-0’. The schema processor should detect any error in an ISBN attribute:

	<Book ISBN=”0-201-77059-8” ...>
	<!-- OK -->

	<Book ISBN=”X-999999-” ...>
	<!-- ERRORS -->

Some programming languages, such as Perl, include a regular expression lan​guage, which defines a pattern against which a series of characters can be com​pared. Typically, this feature is used to search for fragments of a text document, but the XML Schema language has co-opted it for sophisticated validation of ele​ment content and attribute values.

176 The XML Schema Companion

15.2 Simple Templates

The pattern facet element holds a pattern in its value attribute. The simplest pos​sible form of pattern involves a series of characters that must be present, in the

order specified, in each element or attribute declaration that uses the data type con​strained by the pattern facet.

The pattern ‘abc’ might be specified as the fixed value of a Code element: <Code>abc</Code>

The pattern ‘0-201-41999-8’ might be specified as the fixed value of an ISBN attribute:

<Book ISBN=”0-201-41999-8” ... >

In this simple form, a pattern is similar to an enumeration, except that in the case of patterns the match must be exact, regardless of the data type used (recall that Section 14.6 explains how patterns differ from enumerations in this respect).

Although specifying an exact sequence of characters is among the simplest things that can be achieved with the pattern language, specifying a sequence of characters that must not appear in a value is much harder.

It is often a good idea to use the ‘normalized’ or ‘token’ data type as the base data type for the restriction when the presence of surrounding whitespace should not be allowed to trigger an error.

Just as a restriction element can contain multiple enumeration elements, it can also contain multiple pattern elements. The element content or attribute value is valid if it matches any of the patterns:

<restriction base=”token”>

<pattern value=”abc” />

<pattern value=”xyz” /> </restriction>

	<Code>abc</Code>

<Code>xyz</Code>
	<!-- OK -->

<!-- OK -->
	

	<Code> abc </Code>

<Code>acb</Code>
	<!-- OK -->

<!-- ERROR
	-->

	<Code>xzy</Code>
	<!-- ERROR
	-->

	<Code>abcc</Code>
	<!-- ERROR
	-->

Alternatively, a single pattern can contain multiple ‘branches’. Each branch is actually a distinct, alternative expression, separated by the ‘|’ symbol from previ​ous or following branches. Again, the pattern test succeeds if any one of the branches matches the pattern (the ‘|’ symbol is therefore performing a function

15. Patterns 177

similar to its use in DTD content models). The following example is equivalent to the multipattern example above:

<restriction base=”string”> <pattern value=”abc|xyz” /> </restriction>

Note that, although branches are never essential at this level, because multiple pattern elements can be used instead, they are the only technique available in another circumstance discussed later (involving subexpressions).

15.3 Atoms

Each branch of an expression (or the whole expression, if it is not divided into branches) consists of a number of atoms. In the examples above, the letter ‘a’ is one atom and the letter ‘b’ is another.

Apart from individual characters, an atom can also be a character class (an escape sequence, or a selection from a predefined or user-defined group of characters) or a complete subexpression (as explained further below).

Each atom validates one portion of the value of the pattern it is being compared to, and the atoms are considered in sequential order from left to right. In the case of the pattern ‘abc’, the first atom, ‘a’, is expected to match the first character of the value. If the value does not begin with an ‘a’ character, then the pattern has already failed to match the value. If the value does begin with ‘a’, then the next atom, ‘b’, is compared with the next character in the value.

15.4 Quantifiers and Quantities

By default an atom represents a fragment of the pattern that must occur in a value and may not repeat:

<pattern value=”a” />

<Code>a</Code> <!-- OK -->

<Code></Code> <!-- ERROR (’a’ must be present) --> <Code>aaa</Code><!-- ERROR (’a’ must not repeat) -->

The expression ‘abc’ specifies that there must be one ‘a’ character, followed by one ‘b’ character, followed by one ‘c’ character. The values ‘ab’, ‘bc’, and ‘abcc’ would not match this pattern.

But it is possible to state that an atom is optional or repeatable, or even to specify an allowed range of occurrences. The pattern language achieves this by allowing quantifier symbols to be placed after the atoms they relate to. The symbols ‘?’, ‘+’

178 The XML Schema Companion

and ‘*’ are used for this purpose (and have meanings that will be unsurprising to those familiar with DTD content models). Alternatively, a quantity allows any number of occurrences to be precisely specified.

Optional quantifier

The ‘?’ quantifier indicates that the atom before it is optional. For example: ab?c

Legal values in this case include ‘abc’ and ‘ac’.

Note that it is possible to have two identical optional tokens in sequence, such as ‘a?a?b’. This is because, unlike the case with DTD and schema element models, look-ahead parsing is permitted. This means the value ‘ab’ can be matched to this pattern, as can ‘aab’ (and just ‘b’), without causing any problems for the parser. The level of violence and strength of language in a TV program could be indicated with star ratings, ‘*’ (the minimum), ‘**’, ‘***’, ‘****’ or ‘*****’ (the five-star maximum), but perhaps using the letter ‘s’ to represent each star (asterisks cannot be used without further complications that are explained later):

<pattern value=”ss?s?s?s?” />

<Ratings Violence=”ssss” StrongLanguage=”ss” /> Repeatable quantifier

The ‘+’ quantifier signifies that the atom is repeatable. The atom must be present, but any number of further occurences are allowed. For example:

ab+c

Legal values in this case include ‘abc’ and ‘abbbbbbbbbc’, but ‘ac’ would not be valid.

It is not ambiguous to create patterns such as ‘b+b+’ (though it would be pointless). The parser would not need to match a particular ‘b’ character to one atom or the other (except for the first and last ‘b’ in the sequence).

Optional and repeatable quantifier

The ‘*’ quantifier indicates that the atom is both optional and repeatable. This could be seen to be functionaly equivalent to ‘?+’ if such combinations were legal:

ab*c

This expression makes the ‘b’ atom optional and repeatable so legal values include ‘ac’, ‘abc’ and ‘abbbbbbc’.

15. Patterns 179

Again, it is not ambiguous to create patterns such as ‘b*z?b*’. If the ‘z’ atom is absent, no attempt is made to decide whether a particular ‘b’ atom belongs to the first part of the pattern or to the last part.

Greedy quantifiers and backtracking

When a single atom can be matched to multiple characters in a value, matching patterns to values can become quite complex, including multiple interpretations where only one of the possible interpretations would successfully match. The per​ceived issue here is one of ‘greed.’ Consider the pattern ‘a+b?a’ (a series of ‘a’ characters or a series of ‘a’ characters followed by a single ‘b’ character and a sin​gle ‘a’ character) and an attempt to validate the value ‘aaa’ against it. There are two possible interpretations of the pattern, and one of them would not report a match with the value.

In the first scenario, the first atom, ‘a+’, could reasonably match the entire value (it could be greedy). But the remainder of the pattern, ‘b?a’, could not then be matched to anything, so the value would be deemed to be invalid (the missing char​acter ‘b’ is not a problem here, because it is optional, but the missing additional ‘a’ character would trigger a failed match).

In the second scenario, the initial atom is only matched to the first two characters of the value instead of all three. The final atom of the pattern, ‘a’, could then be successfully matched with the final ‘a’ of the value.

A successful match should be reported if either of the interpretations is applicable to the value. In fact, a pattern is matched to a value first by an attempt at the greedy approach, then, if this fails to match the value, by attempts at less greedy interpre​tations until (hopefully) a successful match can made.

Readers familiar with the use of expression languages to find text strings should note that in XML an expression is always expected to apply to the content of an entire element or to a complete attribute value. Hence, there need be no concern that expressions could be crafted that might inadvertently (through sheer greed) find a false match spanning two real instances of a value (and everything between) within a single line of text.

Complex example

The following example includes all three quantifiers, and all the following Code elements are valid according to this pattern:

180 The XML Schema Companion

/>

<pattern value=”a+b?c*”

<Code>a</Code> <Code>ab</Code> <Code>ac</Code> <Code>abc</Code> <Code>aaa</Code> <Code>aaab</Code> <Code>aaabc</Code> <Code>aaabccc</Code>

Quantities

A quantity is a more finely tuned instrument for specifying occurrence options than the qualifiers described above. Instead of a single symbol, such as ‘+’, a quan​tity involves either one or two integer values enclosed by curly braces (‘{’ and ‘}’).

The simplest form of quantity involves a single integer value. This value specifies how many times the atom must occur. For example:

ab{3}c

This pattern specifies that the value must be ‘abbbc’.

A quantity range involves two values, separated by a comma. The first value indi​cates the minimum number of occurrences allowed, and the second value indicates the maximum number of occurrences allowed. For example:

ab{3,5}c

This pattern specifies that the value must be ‘abbbc’, ‘abbbbc’, or ‘abbbbbc’.

It is also possible to specify just a minimum number of occurrences. If the second value is absent but the comma is still present, then only a minimum is being spec​ified. The following pattern allows for everything from ‘abbc’ to ‘abbbbbbbbbc’ and beyond:

ab{2,}c

Note that it is not possible to specify just a maximum number of repetitions in this way. It is always necessary to supply a minimum value. However, a minimum value of ‘0’ is allowed, so ‘{0,55}’ achieves the aim of specifying a maximum of ‘55’.

15. Patterns 181

[image: image1.png]

\​\^

15.5 Escape Characters

A number of significant symbols have now been introduced, such as ‘*’ and ‘{’. These symbols cannot be used as atoms within an expression, because they would be misinterpreted as significant pattern markup. It is therefore necessary to escape these characters when they are needed to match characters in a value (just as ‘&’ and ‘<’ must be escaped in XML documents when they are part of the document text).

The ‘\’ symbol is used in a pattern to escape the character that follows it. This can be seen as similar to the function of the ‘&’ character in XML entity references. But in this case, only the following single character is escaped, so there is no need for another symbol to end an escape sequence (as ‘;’ is needed in the case of entity references).

Just as the sequence ‘&’ is needed in XML documents to allow the ‘&’ char​acter to be included as a data character, so must the ‘\’ symbol also be escaped in patterns. In this case, the ‘\’ escape symbol is placed before the ‘\’ data character, giving ‘\\’ (this should be familiar to C and Java software developers). The follow​ing pattern matches the text ‘a\b’:

a\\b

The other escape sequences for single characters are: ‘\|’, ‘\.’, ‘\?’, ‘*’, ‘\+’, ‘\{’, ‘\}’, ‘\(’, ‘\)’, ‘\[’, and ‘\]’:

(not a branch separator)

(not a not-a-line-end character)

(not an optional indicator)

(not an optional and repeatable indicator)

(not a required and repeatable indicator) (not a quantity start)

(not a quantity end) (not a subgroup start)

(not a subgroup end)

(not a character class start)

(not a character class end)

The following pattern matches the value ‘{a+b}’: \{a\+b\}

In some circumstances, the ‘-’ and ‘^’ characters must also be escaped (‘\-’ and ‘\^’):

(not a character class subtractor or range separator)

(not a negative group indicator)

182 The XML Schema Companion

In addition, escape sequences are used to include whitespace characters that would otherwise be difficult or impossible to enter from a keyboard, including ‘\n’, ‘\r’, and ‘\t’:

\n (newline) \r (return) \t (tab)

Note that an atom can be an escape sequence, rather than a single character, and it is possible to quantify such a sequence. For example, ‘\++’ states that the ‘+’ char​acter is required and repeatable.

15.6 Character Classes

Atoms (quantified or otherwise) can be larger than a single character or escaped character sequence. An atom can also be a character class. This feature allows a particular atom in the pattern to be one of a number of predefined options. For example, perhaps the third character in a value is allowed to be ‘a’, ‘b’, or ‘c’.

All ISBN numbers used by a particular publisher might start with ‘0-201-’ and therefore be completed by a five-digit book identifier and a check digit, such as ‘77059-8’. In this case, the first part of the ISBN number can be represented by the six fixed characters, but it is clearly not practical to cater to all possible book iden​tifier numbers, using the techniques seen so far (nor the check digit, which can also be an ‘x’ as well as any digit). However, a character class pattern, which is enclosed by square brackets (‘[’ and ‘]’), can assist in this situation. The expression ‘-[0123456789]’ specifies that the digit ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, or ‘9’ may appear after a hyphen character. A complete, but very verbose, pattern for the example above follows (but could not be broken over lines as shown here):

<pattern value=”0-201-[0123456789][0123456789] [0123456789][0123456789] [0123456789]-[0123456789x]”/>

Negative classes

A character class becomes a negative character class, reversing its meaning, when the character ‘^’ is placed immediately after the opening square bracket. This specifies that any character except those in the group can be matched. For example, the pattern ‘[^abc]’ specifies that any character except ‘a’, ‘b’, or ‘c’ must be included.

Note that this feature must not be interpreted as matching no character in the value. The pattern ‘a[^b]c’ would match the value ‘axc’ but not ‘ac’.

15. Patterns 183

The ‘^’ symbol can be used later in the group without having this significance, so ‘[a^b]’ simply means that the character must be ‘a’ or ‘^’ or ‘b’. It should not be necessary to place this character first within such a group, where it would be inter​preted as an indicator of a negative character class, but it can be placed there with​out misinterpretation if it is escaped (‘[\^ab]’).

Readers familiar with other expression languages should also note that ‘^’ does not play its usual role as a line-start indicator. Similarly, the ‘$’ symbol is not signifi​cant here (as an end-line indicator). Attribute values do not contain lines of text (a multiple-line attribute value is normalized by the parser before the point at which patterns are used to validate the value) and, while element content can contain lines of text, this concept is rarely relevant.

Quantified classes

Quantifiers can be used on character classes. The quantifier or quantity simply fol​lows the ‘]’ class terminator:

[...]? [...]+ [...]* [...]{5,9}

When the qualifier indicates that more than one occurrence is allowed, this does not mean that only a selected character can repeat. For example, ‘[abc]+’ specifies that at least one of the letters ‘a’, ‘b’, and ‘c’ must appear but that additional char​acters from this set may also appear, so ‘abcbca’ would be just as valid a match as ‘aa’, ‘bbb’, or ‘ccccc’.

The earlier ISBN example can now be shortened considerably:

<pattern value=”0-201-[0123456789]{5}-[0123456789x]” />

15.7 Character Class Ranges

It is not necessary to individually specify every possible character in a large group of characters when the options form a sequence. For example, ‘[abcdefghijklm​nopqrstuvwxyz]’ is a verbose way to specify that any lowercase letter can occur. When a large set of options have sequential character code values (according to the Unicode standard, which incorporates the ASCII standard), as in the example above, then a range can be specified instead. A ‘-’ separator is placed between the first character in the range and the last character in the range. For example, ‘[a-z]’ is a more succinct method of specifying that any lowercase letter is allowed.

184 The XML Schema Companion

Multiple ranges can be given. The following expression allows digits and all non​accented letters to occur:

<pattern value=”[a-zA-Z0-9]+” />

If the ‘-’ character is needed within a character class, it can be escaped with ‘\-’, but it is not necessary to do this outside of a character class. Alternatively, it does not need to be escaped if it is the first or last character in the character class, so ‘[​abc]’ and ‘[abc-]’ both specify that the character must be ‘a’, ‘b’, ‘c’, or ‘-’.

The ISBN example can now be shortened still further: <pattern value=”0-201-[0-9]{5}-[0-9x]” />

Alternatively, here is a simplified ISBN pattern that unfortunately allows the ‘x’ check digit to occur anywhere in the code and does not specify exactly three hyphens, as earlier examples did:

<pattern value=”[0-9x-]{13}” />

A more generalized ISBN code can also now be represented. In this case, no assumption is made as to the area or publisher, so the exact number of digits in each part of the code cannot be known:

<pattern value=”[0-9]+-[0-9]+-[0-9]+-[0-9x]” />

An XML character reference such as ‘{’ or ‘ª’ can be included in a range. This is particularly useful for representing characters that are difficult, or even impossible, to enter directly from a keyboard (but note that escape sequences that achieve the same purpose in similar expression languages are not supported here).

This approach can still be used even when some of the characters in the range would not be valid. Individual characters can be selectively removed from the range, by use of a subclass with a ‘-’ prefix. For example:

<pattern value=”[a-z-[aeiou]]+” />

This pattern removes all vowels as valid options from the list, including the ‘a’ character itself, despite the fact that it actually appears in the range (where it is needed because it signifies the start of the range):

	<Consonants>bcd</Consonants>
	<!-- OK -->

	<Consonants>xyz</Consonants>
	<!-- OK -->

	<Consonants>abcdefgh</Consonants>
	<!-- ERROR -->

Such a subclass can be included within a negative character class. This can look confusing, but the characters allowed are simply reversed, so ‘[^a-z-[aeiou]]’ indi​cates that consonants are not allowed, but vowels (and other characters) are allowed.

15. Patterns 185

15.8 Subexpressions

A complete expression can be embedded within another expression, creating a subexpression. The embedded expression is enclosed by parentheses, ‘(’ and ‘)’. On its own, however, a subexpression has no effect on the complete pattern. The following two examples are functionally identical:

abcde a(bcd)e

At least two features are supported by this concept. A subexpression allows a sequence to be optional or repeatable and allows branches to be inserted into the middle of a larger expression.

Quantified groups

One reason for using a group is to give the enclosed tokens a quantifier. The whole group may be optional or repeatable. The same techniques are used as for single atoms:

a(bcd)?e a(bcd){5,9}e

Note that the first example above is not equivalent to the expression ‘ab?c?d?e’. The difference is that, in this case, the characters ‘b’, ‘c’ and ‘d’ must all be present (in that order) or must all be absent.

An ISBN code might be allowed to be incomplete if the publisher part of the code can be implied:

<pattern value=”(0-201-)?[0-9]{5}-[0-9x]” /> Branching groups

A group is useful when several options are required at a particular location in the pattern, because a subexpression can contain branches. Consider the following example:

abc(1|2|3)d

This pattern matches the values ‘abc1d’, ‘abc2d’, and ‘abc3d’. Of course, with only a single character in each branch, this is just an alternative for the more suc​cinct pattern ‘abc[123]d’. However, that much simpler technique cannot work for multicharacter scenarios. In the following example, the values allowed are ‘abc111d’, ‘abc222d’, and ‘abc333d’:

abc(111|222|333)d

186 The XML Schema Companion

Each branch is a complete expression, and may also contain subexpressions, though this is only needed when there are fixed characters before or after the embedded options:

...(...|aaa(...|...|...)zzz|...)...

An ISBN code for any book published in France (area code ‘2’) or Poland (area code ‘83’) is quite straightforward to express (though the following formulation unfortunately permits a missing or extra digit in the publisher or book code and does not prevent the hyphen that should separate these two parts from actually occuring before or after them both):

<pattern value=”(2|83)-[0-9-]{7,8}-[0-9x]” />

15.9 Character Class Escapes

There are various categories of character class escape. The simplest kind, single character escape, has already been discussed. This is an escape sequence for a single character that has a significant role in the expression language, such as ‘\{’ to represent the ‘{’ character (they are listed and discussed in more detail above). The other escape types are

multicharacter escapes (such as ‘\S’ (non-whitespace) and ‘.’ (non-line-ending character));

general category escapes (such as ‘\p{L}’ and ‘\p{Lu}’) and complementary general category escapes (such as ‘\P{L}’ and ‘\P{Lu}’);

block category escapes (such as ‘\p{IsBasicLatin}’ and ‘\p{IsTibetan}’) and complementary block category escapes (such as ‘\P{IsBasicLatin}’ and ‘\P{IsTibetan}’).

Multicharacter escapes

For convenience, a number of single character escape codes are provided to repre​sent very common sets of characters, including

non-line-ending characters;

whitespace characters and non-whitespace characters;

initial XML name characters (and all characters except these characters); subsequent XML name characters (and all characters except these characters); decimal digits (and all characters except these digits).

The ‘.’ character represents every character except a newline or carriage-return character. The sequence ‘ ’ therefore represents a string of five characters that is not broken over lines. The simplest possible pattern for an ISBN code would be thirteen dots (ten digits and three hyphens):

15. Patterns 187

<pattern value=”
” />

The remaining multicharacter escape characters are escaped in the normal way: by a ‘\’ symbol. They are all defined in pairs, with a lowercase letter representing a particular common requirement, and the equivalent uppercase letter representing the opposite effect.

The escape sequence ‘\s’ represents any whitespace character, including the space, tab, newline and carriage-return characters. The ‘\S’ sequence therefore represents any non-whitespace character.

The escape sequence ‘\i’ represents any XML initial name character (‘_’, ‘:’, or a letter). The ‘\I’ sequence therefore represents any XML noninitial character. Sim​ilarly, the escape sequence ‘\c’ represents any XML name character, and ‘\C’ rep​resents any non-XML name character.

The escape sequence ‘\d’ represents any decimal digit. It is equivalent to ‘\p{Nd}’ (see below). The ‘\D’ sequence therefore represents any other character. The ISBN examples can now be shortened still further, and note that an escape sequence can even be placed within a character class, in this case to indicate that the check digit may be a digit instead of the letter ‘x’ (but note further that such escape sequences cannot be used to indicate the start or end of a range of characters):

<pattern value=”\d*-\d*-\d*-[\dx]” />

The escape sequence ‘\w’ represents all characters except punctuation, separators, and ‘other’ characters (using a mixture of techniques described above and below, this is equivalent to ‘[�--[\p{P}\p{Z}\p{C}]]’), whereas the ‘\W’ sequence represents only these characters.

Quantifiers can be used with these escape sequences. For example, ‘\d{5}’ spec​ifies that five decimal digits are required.

Category escapes

The escape sequence ‘\p’ or ‘\P’ introduces a category escape set. A category token is enclosed within curly brackets, ‘{’ and ‘}’. These tokens represent pre​defined sets of characters, such as all uppercase letters (a general kind of category escape) or the Tibetan character set (a block from the Unicode character set).

General category escapes

A general category escape is a reference to a predefined set of characters, such as the uppercase letters, or all of the punctuation characters. These sets of characters have special names, such as ‘Lu’ for uppercase letters, and ‘P’ for all punctuation. For example, ‘\p{Lu}’ represents all uppercase letters, and ‘\P{Lu}’ represents all characters except uppercase letters.

188 The XML Schema Companion

Single letter codes are used for major groupings, such as ‘L’ for all letters (of which uppercase letters are just a subset). The full set of options is listed below:

	L
	
	All Letters

	
	Lu
	uppercase

	
	Ll
	lowercase

	
	Lt
	titlecase

	
	Lm
	modifier

	
	Lo
	other

	M
	
	All Marks

	
	Mn
	nonspacing

	
	Mc
	spacing combination

	
	Me
	enclosing

	N
	
	All Numbers

	
	Nd
	decimal digit

	
	Nl
	letter

	
	No
	other

	P
	
	All Punctuation

	
	Pc
	connector

	
	Pd
	dash

	
	Ps
	open

	
	Pe
	close

	
	Pi
	initial quote

	
	Pf
	final quote

	
	Po
	other

	Z
	
	All Separators

	
	Zs
	space

	
	Zl
	line

	
	Zp
	paragraph

	S
	
	All Symbols

	
	Sm
	math

	
	Sc
	currency

	
	Sk
	modifier

	
	So
	other

15. Patterns 189

	C
	
	All Others

	
	Cc
	control

	
	Cf
	format

	
	Co
	private use

For details see http://www.unicode.org/Public/3.1-Update/UnicodeCharacter​Database-3.1.0.html.
Block category escapes

The Unicode character set is divided into many significant groupings such as musi​cal symbols, Braille characters, and Tibetan characters. A keyword is assigned to each group, for example, ‘MusicalSymbols’, ‘BraillePatterns’, and ‘Tibetan’.

The following table lists the full set of keywords in alphabetical order:

	AlphabeticPresentationForms
	Hebrew

	Arabic
	HighPrivateUseSurrogates

	ArabicPresentationForms-A
	HighSurrogates

	ArabicPresentationForms-B
	Hiragana

	Armenian
	IdeographicDescriptionCharacters

	Arrows
	IPAExtensions

	BasicLatin
	Kanbun

	Bengali
	KangxiRadicals

	BlockElements
	Kannada

	Bopomofo
	Katakana

	BopomofoExtended
	Khmer

	BoxDrawing
	Lao

	BraillePatterns
	Latin-1Supplement

	ByzantineMusicalSymbols
	LatinExtended-A

	Cherokee
	LatinExtended-B

	CJKCompatibility
	LatinExtendedAdditional

	CJKCompatibilityForms
	LetterlikeSymbols

	CJKCompatibilityIdeographs
	LowSurrogates

	CJKCompatibilityIdeographsSupplement
	Malayalam

	CJKRadicalsSupplement
	MathematicalAlphanumericSymbols

	CJKSymbolsandPunctuation
	MathematicalOperators

190 The XML Schema Companion

	CJKUnifiedIdeographs
	MiscellaneousSymbols

	CJKUnifiedIdeographsExtensionA
	MiscellaneousTechnical

	CJKUnifiedIdeographsExtensionB
	Mongolian

	CombiningDiacriticalMarks
	MusicalSymbols

	CombiningHalfMarks
	Myanmar

	CombiningMarksforSymbols
	NumberForms

	ControlPictures
	Ogham

	CurrencySymbols
	OldItalic

	Cyrillic
	OpticalCharacterRecognition

	Deseret
	Oriya

	Devanagari
	PrivateUse (three separate sets)

	Dingbats
	Runic

	EnclosedAlphanumerics
	Sinhala

	EnclosedCJKLettersandMonths
	SmallFormVariants

	Ethiopic
	SpacingModifierLetters

	GeneralPunctuation
	Specials (two separate sets)

	GeometricShapes
	SuperscriptsandSubscripts

	Georgian
	Syriac

	Gothic
	Tags

	Greek
	Tamil

	GreekExtended
	Telugu

	Gujarati
	Thaana

	Gurmukhi
	Thai

	HalfwidthandFullwidthForms
	Tibetan

	HangulCompatibilityJamo
	UnifiedCanadianAboriginalSyllabics

	HangulJamo
	YiRadicals

	HangulSyllables
	YiSyllables

A reference to one of these categories involves a keyword that begins with ‘Is...’ followed by a name from the list above, such as ‘Tibetan’. For example, ‘\p{IsTibetan}’ represents any Tibetan character and ‘\P{IsTibetan}’ represents any character not from this set.

